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In this paper, a conservative difference scheme for generalized nonlinear Schrodinger equa- 
tions is given. We apply multigrid method and adaptive algorithm to solve the equations. 
Numerical results are presented and compared. They demonstrate that the multigrid and 
adaptive algorithm are efficient and can considerably relax the restrict on step size of time, 
which is caused by nonlinear iteration. li 1990 Academx press. IIK 

1. INTRODUCTION 

In order to ensure computational stability, we often employ unconditionally 
stable implicit schemes for nonlinear differential equations. The schemes are 
nonlinear algebraic equations, which always are solved by means of iterative 
algorithms. The nonlinear iterative algorithms require more computing time and 
their iterative convergence depends on step size of time. Thus, the step size of time 
is restricted, though unconditionally stable schemes are used. 

Multigrid method can efficiently solve the algebraic equations arising in discretiz- 
ing boundary-value problem and enormously reduce the amount of computational 
work. Adaptive algorithm is useful for problems in which different scales of 
discretization are needed in different parts of the domain [3,4]. 

In this paper, we consider application of multigrid and adaptive algorithm to 
nonlinear Schrodinger (NLS) equation. Conservative difference scheme for the NLS 
equation has been given in [ 1, 21. This is a nonlinear algebraic equations. By 
means of theoretical analysis and test computation, a multigrid procedure for 
solving the NLS equation is presented. The NLS equation possesses soliton 
solution, which is located at a small region. Therefore, the adaptive algorithm can 
be efficiently employed in solving the NLS equation. In view of Brandt’s idea 
[3, 61, we deduce a formula on relation between truncation error rK and quantity 

K rK+, , which is computed in the multigrid procedure. The quantity zE+ 1 is used in 
grid adaptiation. 

Numerical results of applying the multigrid and adaptive algorithm are given and 
compared with ones of iterative method. In previous papers, it has been discussed 
that the multigrid method can decrease the amount of computational work and 
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save CPU time. But, our computational results demonstrate the iteration of the 
multigrid method also can relax the restrict on the step size of time, which is given 
by nonlinear iteration. 

2. DIFFERENTIAL EQUATION AND DIFFERENCE SCHEME 

We consider the following initial-boundary value problem of generalized NLS 
equation 

ru,-~A(x)~+B(r)q(,u12)u+F(x, t)u 

= G(x, t), f>O,XL<X<XR, (2.1) 

ulX=.YL=Q UIr=yR=Q t>o (2.2) 

4=o=uo(x), XL<X<XR, (2.3) 

where u(x, t) is an unknown complex functional vector, A(x) = (a,(x)),. ,+, is a 
real diagonal matrix, F= (f,,Jx, f))Mx ,,,, is a symmetrical real matrix, p(x) and 
q(s) are real functions, uO(x) and G(x, t) are complex vectors. 

It is easy to obtain two conservation laws of the problem (2.1)-(2.3), namely, 

IMx, ~)llt2 = Iluk ON& + 2 ( Im(G(x, z),u(x, 5)) & (2.4) 

and 
au(x, t) du(x, t) 

At-x) 73 7 
> 

+ (B(x), Q(lu(x, f)l*)) 

= 4X)~q-y 
i 

au(x, 0) au(x, 0) 
+ (b(x), Q(lU(X~ W)) 

(2.5) 

where inner product (f(x, t), g(x, t)) = I,:=, J”,Ff,(x, t) .g,(x, t) dx and Q(s) = 
{“o q(z) dz. 

The problem (2.1)-(2.3) can be approximated by conservation difference scheme 

+piQ(lu 
2 

:+'I')-Q(lu;12) (u;c,l +un ,,+i 2 ,,+,,2,,;;1 +un ,) 
lu;+'12- llq' m./ 2 m.l,i ( 13 I 

/= 1 

= (y + I/2 
rn.l ) 1 dmbM, 1 <j<J- l,n=O, i)..., (2.6) 
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u~o=u~J=o, l<mdM, n=O,l,..., 

‘L, j = U0,m(Xj)9 ldmdM, lGj<J-1, 

(2.7) 

(2.8) 

where 

h=(x,- xJJ and z are the step sizes of space and time, respectively. 
The following theorems have been proved in [2, Theorems l-41. 

THEOREM 1. Suppose that Ifm.,(x, t)l <c, 

UOJn(X) E %Cx,, x,1, 1 <m, IGM, q(s)E C’[O, CD), and assume that one of the 
following conditions are satisfied 

(i) O<c,<a,(x)<c, O<B(x)<c, Q(s)>O, SE [O, co); 
(ii) O<c,<a,(x)<c or 0 < co < -a,(x) 6 c, IP( d c, Id( d c> 

SE I% a); 
(iii) O<c,<a,(x)<c or O<c,< -a,(x)<c, Ip(x)I <c, q(s)=sp, O<p<2, 

where c, and c are positive constants. Then the scheme (2.6k(2.8) is stable in L, 
norm for initial values. 

THEOREM 2. Suppose that the conditions of Theorem 1 are satisfied, and assume 
that for the solution of problem (2.1)-(2.3), u(x, t) E c(~~~‘, a,,,(x) E c3. Then the solu- 
tion ut, of the difference problem (2.6)-(2.8) converges to the solution u of the problem 
(2.1 k(2.3) in L, norm and I/u - UJ L2 = O(T~ + h2). 

THEOREM 3. Assume the conditions of Theorem 1 are satisfied, and uO,Jx) E H2. 
Then there exists the generalized solution of the problem (2.1)-(2.3) and it is unique. 

If the condition 

(iv) O<c,d -a,(x)<c, O< -B(x)<c, Q(s)>O, SE [O, co), 

is satisfied instead of conditions (i), (ii), (iii) in Theorems 1, 2, and 3, then these 
theorems can still be obtained by means of the proof idea given in [2]. 

The scheme (2.6)-(2.8) possesses discrete conservation laws : 

h F ‘i’ Iu;+J’ 
“,=I J=i 

=h 1 1 lut,J12+ h C 1 c Im[Gk,lt,“‘(ck,> + UL,j)l (2.9) 
I?!=1 J=l k=O m=l j=l 
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and 

k=O m=l I=1 j=l 

+ 2. Re i f ‘f’ G~~‘,“‘(z$~~‘)~. 
k=O m=l j=l 

(2.10) 

Comparing (2.9) and (2.10) with (2.4) and (2.5), we know that the difference 
scheme (2.6)-(2.8) keeps two conservation laws that the differential problem 
(2.1~(2.3) possesses. 

Nonlinear iterative algorithms for the scheme (2.6)-(2.8) are discussed in [l, 21. 
It has been proved that when r d const . h”, tl = 1 or 2, the iterative algorithms are 
convergent. 

3. APPLICATION OF THE MULTIGRID METHOD 

We shall now consider the application of the multigrid method to an initial- 
boundary value problem of basic NLS equation 

iu,+u,,+2~4%=0, t>o, x,<x<x,, (3.1) 

4X=XL’ 4C=.‘R=O’ t > 0, (3.2) 

4I=o=uo(x), x,<x<x,, (3.3) 

The conservation difference scheme that approximates (3.1)-(3.3) may be written as 

A~:=,‘+Bi”+‘ui”~‘+Au,“f:-F”+‘=0, 16 j<J-1, n=O, l,..., (3.4) 
J 

U”=U”=o 
0 J 9 n = 0, 1, . ..) (3.5) 

u; = UO(Xj), l<j<J-1. (3.6) 

where 

F”+%u;-qq+, 
J 2h2 

581/88/Z-8 



366 CHANG AND WANG 

They are obviously nonlinear algebraic equations and are solved by full- 
approximation scheme (FAS) of the multigrid method [3,6]. 

Now, we consider a brief description of the FAS mode applied to the equation 

LU=G, in Sz. 

Its approximation solution rP on the finest grid QM satisfies 

L”UM = GM, in Q”. (3.8) 

Assume that the grid 52 K+ ’ is liner than the grid QK and the ratio of their step size 
is h,, ,/h, = l/2. In the FAS mode, the UK satisfies the modified equation 

LKUK = p, in QK, (3.9) 
where 

GK=LK(z~+,UK+‘)+z~+l(GK+l-LK+‘UK+’),, K=O, 1, . . . . M- 1, 

GM = GM. 

Let 
K ZK+l=LK(z;+IUK+l)-z~+I(L~+‘UK+‘); (3.10) 

then 

GK=z;+,GK+‘+T;+‘, K=O, 1, . . . . M- 1, 

GM = GM, 

where Ii+ i and Zi’ ’ denote restriction and interpolation operators, respectively. 
In interpolating correction to the finer grid, the formula is 

UK+ ‘(new) = UK+ ‘(old) + 1;’ ‘(UK _ I;+, UK+ Uold))~ (3.11) 

A flow chart of FAS mode is given in Fig. 1. 
In view of theoretical analysis and numerical computation, we choose that the 

restriction operator is 

U,K=(z~+lUK+‘)j= u$.+’ (3.12) 

and interpolation operators are written as 

UC’ ’ = (I;+ 1 UK)j = u;, (3.13) 

u;.:: = (z;+‘UK)*j+l =g w+~L)-~(ujL+u~+2) 

2<jdJ-3, (3.14) 
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4 

SetKt M,EKtGM,UKtUM 

in 
A few iterations for 

LK UK =GK 

t 

KtK-1 
No 

J- 

End TKF, = LK(IK+K,UK+‘)-IK+K,(LK+’ UK+‘) 

GK=IK~,GK+‘+ TK~,‘UK=IK~,UK+’ 

t- l 

FIG. 1. Flow chart for FAS mode. 

The following interpolation formulas are used near the left boundary: 

u f”=&JJ~+fglf-&U~++$J~, (3.15) 

U f’l=&(Uf+ u;,-~(U~+U;y). (3.16) 

The interpolation formulas near the right boundary are similar to (3.15 :) and (3.16). 
Considering that r is a small quantity and IBy+ ‘1 > 2A, a Seidel-type iterative 

formula is employed 

F”+ l(S) _ Au+,‘(S) _ AunT;(S+ 1) 
Un+l(s+l)- J , J - 

J B” + l(s) , u” + l(O) = q, 
J 

(3.17) 
J 

By means of linearization of Eq. (3.17), a convergence factor is approximately 
obtained 

where BE B’t + l(‘) = i - z/h’. Let u= 2h2/t, we have 
J 

P(@ = 
1 

5+cr*-2crsintI-4cosO 
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and smoothing factor 

ii = n,2y;5 n A@ = . . 
Its values are given in Table I. 

The multigrid method is applied to the problem (3.1~(3.3) subject to the 
following conditions : 

(i) One-soliton solution 

uo(x) = Sech(x + 10) .exp(2i(x + lo)), 

xL= -16, xR = 16; 
(3.18) 

(ii) Collision of two solitons, which move in the opposite direction 

u,,(x) = Sech(x + 10) .exp(2i(x + 10) + Sech(x - 10). exp( -2i(x - lo)), 

xL= -16, xR = 16; (3.19) 

(iii) Collision of two solitons, which move in the same direction 

U,(x)=Sech($x).exp(fix)+Sech($(x-25)) 

.exp (ii(x-25)), 

XL,= -20, xR = 80. (3.20) 

In computation, we use the conservation scheme (3.4)-(3.6) and require that the 
iterative error E E maxi I$+ I(‘+ ‘) - uJ+‘(‘)I 6 lo-’ in every step of time. The 
soliton solutions are computed from t = 0 to t = T on the Micro Vax II computer. 
We take that h=O.l, r=O.Ol, 0.02, 0.05, 0.1, 0.2, and 0.5, T=5 for the case (i); 
h=O.l, r=O.Ol, 0.02, 0.05, 0.1, and 0.2, T=5 for the case (ii); and h=0.25, 
T = 0.0625, 0.125, and 0.25, T= 45 for the case (iii), respectively. The computational 
results are given in the Tables II-IV. 

TABLE I 

Values of the Smoothing Factor 

7 h u fi 

0.01 0.1 2.0 0.4472 
0.02 0.1 1.0 0.5000 
0.05 0.1 0.4 0.4789 
0.1 0.1 0.2 0.4642 
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TABLE II 

Numerical Results for One-Soliton Solution 

5 
Method 0.01 0.02 0.05 0.1 0.2 0.5 

Seidel-type Number of 13 41 385 D D D 
iteration iterations 

CPU time 32min 19s 39min42s - - - 

Multigrid Number of 2 3 3 3 3 3 
method levels in the 

multigrid 

Number of 
iterations 

1 2 3 3-4 34 D 

CPU time 18min18s 16min19s lOmin35s 4min49s - 

Note. “D” denotes divergent. 

4. APPLICATION OF THE ADAPTIVE ALGORITHM 

It is obvious that special refinement of the grid is required near wave crest of the 
soliton and the coarser grid can be used in other parts of the domain. Therefore, 
it is valuable to consider adaptive algorithm at the base of the multigrid method. 

An important feature of the adaptive algorithm is adaptivity. The grid may 
change during the solution process, adapting itself to the evolving solution. The key 
of the algorithm is how to choose the domain requiring local refinement of the grid. 

TABLE III 

Numerical Results for Collision of Two Solitons 
Which Move in Opposite Directions 

Method 

Seidel-type 
iteration 

Multigrid 
method 

Number of 13-22 64200 D D D 
iterations 

CPU time 34 min 39 s 

Number of 3 3 3 3 3 
levels in the 
multigrid 

Number of l-2 2 3 3-10 D 
iterations 

CPU time 19min59s 17minlls llmin26s 6min51s - 
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TABLE IV 

Numerical Results for Collision of Two 
Solitons Which Move in the Same Direction 

Method 
0.125 0.25 

Seidel-type 
iteration 

Multigrid 
method 

Number of 
iterations 

CPU time 

Number of 
levels in the 
multigrid 

Number of 
iterations 

15-18 

1 hOmin36s 

2 

3 

D D 

3 3 

4-8 D 

CPU time 32 min 24 s 25 min 27 s - 

In general, truncation error can represent error of the solution. The bigger the 
truncation error, the bigger is the solution error. Hence, the domains requiring 
local refinement of grid are chosen by means of the truncation error, which is 
defined as 

TK = LK(fKU) - ZK(LU), (4.1) 

where L is the differential operator, LK is the difference operator on the grid QK, 
U is the true differential solution, and 1” and IK are two continuum-to-grid OK 
projection operators. 

In view of Eqs. (3.9) and (3.10) of FAS mode, we have 

LKUK=I~+,GK+l+T;+,r K=O, 1, . . . . M- 1, 

L”UM = GM. (4.2) 

Assume that the operators i” and ZK possess properties 

and 

f”’ ‘,TJ= UK+ 1, (4.4) 

when the difference solution UK converges to the differential solution U. Thus, it 
follows from (4.1) that 

K+l- K z;+,t -zK+,LK+lUK+~-IK(LU) 
=z;+,LK+lp+l -LK(PU)+TK= -';+,+ZK; 
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i.e., 
K 

‘K+l=’ K-Z;+lTK+‘. (4.5) 

Making Taylor’s expansion, we obtain, from (4.1), 

.rK=cK(x) .h;+O(h;+‘), (4.6) 

where c”(x) is independent of h,. Let h, = 2h,+, as a general rule; then it follows 
from (4.5) that 

K TK+I=CK(X)h~-z~+lCK+‘(X)h~+l+O(h~+l). 

It is easy that Zz+1 is chosen to satisfy 

zK cK+l 
Kfl (x) = C”(x) + O(h,). 

We have 
K TV+ I = C”(x) hk” - c”(x) hf;, 1 + O(h I;+‘)=C”(x)[l-($‘I h;+O(h;.“‘). (4.7) 

Combining (4.6) with (4.7) yields 

rK=2P(2P-1)-1r;+1+O(hfC+1). (4.8) 

Therefore, the quantity rg+ r is proportional to the truncation error r“. We 
can choose the domains requiring local refinement of the grid by means of the 
quantity rg+ 1. This adaptive algorithm at the base of the multigrid is efficient and 
economical. 

Using the difference scheme (3.4)-(3.7) and the restriction operator (3.12), we 
obtain 

(LKUK)j=AKU;+,+B~;+AKUIK_,, 

(LKZK,+,U K+~)i=AK(z~+1UK+~)j+1+B/K(z~+luK+’)j+AK(z~+,uK+~)i~, 

= AKu;;;+ B,“u;+‘+ AKU;.+;, 

cc, ,(L K+‘UK+‘)lj= (LK+‘UK+ l)y 

=AK+l~$;; + B$+‘u;+’ +AK+‘u;:;. 

Thus, it follows from the formula (3.10) that 

(T:+ ,)j=AK(~$z: + U$T:) 

-A K+l(~$;;-~;+;)+(B;-B;+l)u$+’ 

=AKfl($u%=:+~u~.f:-u%=:-u~f:) 

T 5 
~ - 

+ -4hZ,+,+h:,+, ( > 
K+ I 

“I 

=A “+‘(~u~.~~+~u~.+-u~.~~-u~+~+~u~.+’). 

The quantity zE+ I is linear, although the difference scheme (3.4t(3.7) is nonlinear. 
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TABLE V 

Numerical Results of the Adaptive Algorithm 
for One-Soliton Solution 

0.05 0.1 

Adaptive 
algorithm 

Multigrid 
method 

7 min 53 s 6 min 24 s 4min 16s 3 min 49 s 

18 min 18 s 16 min 19 s 10 min 45 s 5 min 35 s 

Using the adaptive algorithm, one-soliton solutions for the NLS equations 
(3.1)(3.3) are computed. We take xL= -16, xR= 16, T=5, h=O.l, r=O.Ol, 0.02, 
0.05, and 0.1. At first, the approximation solution in the interval [ - 16, 161 is 
computed by the multigrid of two levels, in which step sizes of space are h, = 0.4 
and h2 = 0.2. In this process, values of the quantity ri are stored. Then, maximum 
value (T;),~ = maxi( is chosen and domain .Q*, where (r;), 3 0.1 . (r;),, is found. 
Computational experience shows that j, is at wave crest and the domain Q* is only 
a interval j, < j < j,. In order to ensure soliton is symmetrical on j,,, we adjust 
the domain Q* to domain Q4 which is a interval j,--Aj<j<j,+Aj, 
Aj = max( j, - j, , j, - j,). Finally, the approximation solution is computed by the 
multigrid in step size h, = 0.1 and h, = 0.2 at the domain Q4. The results are given 
in Table V. In view of experience, we know that the domain Q4 is about the one 
fifth of the interval [ - 16, 161 and moves with the soliton. 

5. DISCUSSION OF COMPUTATIONAL RESULTS 

(1) We know that convergence of nonlinear iteration requires too small step 
size of time z in computation, when nonlinear evolution equation is solved by 
implicit scheme. For example, the number of iterations in r d 0.05 increases sharply 
with increments of the step size of time r and iteration process is divergent for 
r > 0.05, when one-soliton solution of NLS equation is computed. Our computa- 
tional results demonstrate a new advantage of the multigrid method: it can 
considerably relax the restrict on step size of time, which is given by nonlinear 
iteration. For example, the Seidel-type iteration method is convergent only for 
r = 0.05. But, iteration process of the multigrid method still is convergent for z = 0.2 
and CPU time is only 4 min 49s in computing the one-soliton solution. This 
advantage can encourage the multigrid method to be applied more widely. 

(2) We know from the computational results that the adaptive algorithm 
may combine conveniently with the multigrid method and local refinement of the 
grid can be chosen by the quantity zE+ 1. For example, the adaptive algorithm for 
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one-soliton solution and r = 0.05 decreases CPU time from 10 min 45 s, which is 
taken by the multigrid method, to 4 min 16 s and the relined domain is one-fifth of 
the interval [ - 16, 161. This means that the adaptive algorithm is suitable and 
efficient. 

(3) The interpolation operator 12” is important for the multigrid method. 
We try to take various forms of the operator and compare them. When the order 
of the operator is less than six, the correction on the coarser grid cannot be trans- 
mitted to the finest grid, and the iterative error on the finest grid cannot be 
decreased to less than 10e5. When the order of the operator is too large, there are 
added components of high frequencies of the error in the liner grids that increase 
the number of the iteration. We also consider to take cubic splines as the operator. 
Thus, smooth correction can be obtained with the liner grid. But, computational 
experience demonstrates that this does not decrease the number of iteration and 
may increase CPU time, since complication of computing cubic spline functions. 
The formulas (3.12)-(3.16) are suitable for the NLS equation in view of our 
experience. 

(4) We consider computational accuracy in various step sizes of time. Let a 
and v denote maximum amplitude and speed of the soliton, respectively. Their 
numerical results are given in Tables VI and VII for cases (i) and (ii), respectively. 

It follows from (2.4) and (2.5) that there are two conserved quantities in basic 
NLS equations (3.1))(3.3). They are 

I 
XR 

Iu(x, t)12 dx = const., 
xl. 

dx = const. 

TABLE VI 

Computational Results of Amplitude and Speed 
of the Soliton for Casr (ii) 

7 
0.01 0.02 0.05 0.1 0.2 

t 

1 a 
” 

2 a 
u 

3 a 
” 

4 a 
Li 

5 a 
u 

1.008 
4.000 

1.016 
4.000 

1.009 
4.000 

1.007 
4.000 

1.005 
4.Ow 

1.013 
4.000 

1.019 
4.ooo 

1.014 
4.000 

1.010 
3.950 

1.007 
3.950 

I.023 
4.000 

1.033 
4.000 

1.026 
3.950 

1.021 
3.950 

1.018 
3.950 

1.057 1.024 
3.900 3.700 

1.094 1.075 
3.900 3.650 

1.086 1.093 
3.850 3.650 

1.064 1.051 
3.800 3.600 

1.045 0.982 
3.750 3.400 



374 CHANG AND WANG 

TABLE VII 

Computational Results of Amplitude and Speed 
of the Solitons for Case (ii) 

T 0.01 0.05 

t First soliton Second soliton First soliton Second soliton 

1 a 1.009 
V 4.OcKl 

2 a 1.005 
V 4.000 

2.5 n 2.045 
V 4.000 

3 a 0.9992 
v 4.000 

4 a 1.010 
V 4.000 

5 a 1.005 
V 4.000 

1.009 
4.000 

1.005 
4.000 

2.045 
4.000 

0.9992 
4.000 

1.010 
4.ooo 

1.005 
4.000 

1.023 
4.000 

1.029 
4.000 

2.080 
4.000 

1.033 
4.000 

1.026 
4.000 

1.014 
4.000 

1.023 
4.000 

1.029 
4.000 

2.080 
4.000 

1.033 
4.000 

1.026 
4.000 

1.014 
4.000 

Errors of the conserved quantities are denoted by p, and p2 ; i.e., 

where q,,, and qzo are exact values of j;; lul* dx and j;; ( Iu14 - ~&@t~‘) dx, respec- 
tively, and q1 and q2 are the calculated values of the quantities. It follows from the 
computational results that pI and p2 are very small for r ~0.1. For example, in 
computation of one-soliton solution there are 

p1 < 0.0001, p* < 0.005, for z = 0.01; 

p1 6 0.004, p* dO.01, for 5 = 0.05. 

In view of the Tables VI, VII and the values of p1 and p2, we can find that it is bet- 
ter to take z =0.05 for the case (i) and (ii), and comparison of CPU times of 
various algorithms are given in Table VIII. The results for the case (i) and T = 0.05 
is drawn in Fig. 2. 

Theorefore, the multigrid method is efficient for solving the nonlinear evolution 
equation and the adaptive algorithm can combine with the multigrid method for 
the problem. 

Comparing the adaptive solution with the solution of the multigrid method, we 
know that the difference between them is less than lo-‘. This result is satisfactory, 
because the iterative error E also is less than lo-‘. 
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TABLE VIII 

Comparison of CPU Time for Cases (i) and (ii) 

Case 
Seidel-type 

iteration 
Multigrid 
method 

Adaptive 
algorithm 

(i) 32 min 19 s 10 min 45 s 4min 16s 
(ii) 34 min 29 s llmin29s - 

Note. 7 = 0.01 for Seidel-type iteration and T = 0.05 for other methods. 

(5) We try to use a greater number of levels and coarser grid in the multigrid 
method. The results for the one-soliton solution, z =0.5 and r = 5, are given in 
Table IX. Other results indicate a similar property. The computational results show 
that the multigrid procedure presented in this paper is convergent for a greater 
number of levels and coarser grid. But, the coarsest grid should be fine enough to 
provide rough approximation. 

(6) In order to compare CPU time between the multigrid method and the 
Seidel-type iteration, we require that E = max, [UT+ ‘(‘+ ‘) - UT+ ‘(‘)I < lo-‘. It is 
possible that the actual error is smaller in the multigrid than in the Seidel-type, 
because in the latter the convergence is much slower than in the former. Therefore, 
we consider two criteria of convengence in the multigrid 

and 
E n*+1~maxl~~+'("+'1)-~,~I~10~5, 

i 

0.70 --T=5: : 

-16 -12 -8 -4 0 4 8 12 16 
X-AXIS 

FIG. 2. Soliton solution for the case (i) and the r = 0.005. 
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TABLE IX 

Comparison of Various Number of Levels 
for One-Soliton Solution, 7: = 0.5 and T= 5 

Number of levels 
in the multigrid 2 3 4 5 6 

Number of iterations 3 3 3 34 44 

CPU time llmin29s 10 min 45 s 10 min 54 s 12min44s 13 min 37 s 

where u,? denotes value on the linest grid before Seidel-type iteration which is to 
smooth error out in the multigrid. The values En+' and E",+ ’ for one-soliton solu- 
tion and r = 0.05 are given in Table X. It follows from the Table X that the error 
E n + ’ is slight smaller than E," + ', when they are less than lo-‘. Therefore, we can 
use En+' < 10e5 rough to compare CPU time between the multigrid and the 
Seidel-type iteration. 

APPENDIX: UNIQUENESS AND CONVERGENCE 
OF THE NONLINEAR ITERATION (3.17) 

In this section, we consider the difference scheme (3.4)-(3.7) and the Seidel-type 
iteration (3.17). We use the notations 

J-1 J-1 

IIUnl12=~ c bq125 llu:l12=h c I(q~12~ 
j= 1 j=O 

ll~nllcc = sup lq. 
l<./<J-1 

TABLE X 

Values E”+ ’ and E;+ ’ for one-soliton solution and x = 0.05 

n Number of iterations Et?+, E”+’ 
* 

- - 
First 0.167 4.812 x 10m4 
Second 4.208 x 10 -’ 1.293 x 10-s 
Third 9.537 x lo-’ 1.073 x 1o-6 

First 0.168 4.481 x 10m4 
Second 4.262 x 1o-5 1.192x 1O-5 
Third 1.073 x 1o-6 1.252 x 10m6 

First 0.171 5.097 x 10 m4 
Second 5.037 x 10-5 1.419 x 10-5 
Third 1.132 x IO-” 1.371 x lo-” 
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LEMMA 1 [7, Lemma 2.11. Let E > 0 be a given constant, then there exists a 
constant c1 depending only on E such that 

40) 2 max ~Y(x)[~<E - 
O<x<l (I II dx L2 

+ c II Y(X)ll t,, 

where y(x) E L,[O, 1). 

LEMMA 2 [S, Lemma 4.21. For any h, there exists such operator I,,: 
Li -+ L,[O, 11 that zf yhe Lt and y(x) = Zh yh, then y(x,)= yh(xj) and y(x) is 
analytic, It, commutes with shifts and dtfferences, and there is estimate 

where 
J-l 

yh:h c Iy;12<oo,y~=y:=0 
j=1 

(D+yh)j=; (y,“+1.- $3 

LEMMA 3. Let E > 0 be a given constant, then there exists a constant c2 depending 
only on E such that 

Proof It is immediate by Lemma 1 and Lemma 2. 

THEOREM 4. Assume that uo(x) E H’, then there are estimates for the solution of 
the difference scheme (3.4)-(3.7) 

IWII d C3r ll~“,ll G c4, IIUnll cc = c5. 

Proof: Taking Gz,:‘j2 =O, ff,:jf/' =O, p,= 2, a,,j+l,2 = -1, and Qr+’ = 
;lq+‘I” in the conservation laws (2.9) and (2.10), we have for the solution of the 
difference scheme (3.4)-( 3.7) 

llUnl12 = I/~“/12> (A.11 
J-l J-l 

- II(u”f’ ),lI’+h 1 I~/n+~j~= -Ilu;l12+h c luj’l”. (A.21 
j=l j=l 

Without loss of generality, we can assume that h is chosen so small that there are 

lluOll G 2 II~o(X)II L2’ 

J-l 

h. c (~(10(~62 I 1; Cuo(414 dx = 2 ll~o(x,ll”,,. 
,=I 
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Thus, it follows from (A.1 ) and (A.2) that 

II4 ~211kdx)llLz=C3, (A.31 
J-1 

+w,(m,+~ 1 by14. (A.41 
j=l 

From Lemma 3 and (A.3), we have 

where E is chosen such that E. c3 < i. On combining this with (A.3) and (A.4), we 
deduce that 

(A.5) 

Thus, it follows from Lemma 3, (A.3), and (A.5) that 

IUnIt 00 dc,. 

THEOREM 5. Assume uO(x) E H’. Zf we use iterative initial value u,““(‘) = ~7, 
1 < j 6 J - 1 and the step size of space and time satisfy 

h<&, zdc,.h2, 

where c6 is a positive constant depending on c5. Then the Seidel-type iterative 
algorithm (3.17) is convergent and solution of the difference scheme is unique. 

Proof Let .s,“+1(S) = $+I - uyf lCS’. From (3.4) and (3.17) we have , 

ACT+‘(“) + B”+ ‘(S)$+ ‘(S+ “+,&“f ‘(SC’) _ H”+ l(S) 
J+l 

- 
J .I J-1 i ' 

1 <j< J- 1, (A.6) 

where 

Hi”+‘(S)= -; (,;+‘+u,“)(lu~+‘l +IU;+‘(y)&;+“(S’. 

Now, we prove by contradiction that 

(A.7) 

where 0 < 6 < 1, independing on s. 
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Assume (A.7) to be false, then for any 1 > E > 0 there exists s,, Z 0 such that 

le;o+ '(sO+ l)l = max I$!+l(SO+‘)I>(l-&) max IEJ!+‘(‘~~~, 
I<,j<J-1 ' (A.81 

lGj<J--I 

and it holds for s < sO: 

max IE;+‘(‘+ “1 d 6 max Is;+ l(S’l. 
lGj<J-I l</<J-1 

(A.91 

Thus, (A.6) yields 

i.e., 

I 
I-A-A.(l/(l-&))’ (A.lO) 

From u7+‘(” = z$! and (A.9), we have 
J 

max IE;+~(S’I < 
l<j<J-1 

max Iu;+~-u;~, 
l<j<J-I 

s<s,. (A.ll) 

It follows from the Theorem 4 that 

I&;+‘(s’l <2c,, SGS,. 

Considering h 6 l/fi es, we have estimate 

1 -z- z 
2h2 2h2( 1 -E) 

4h2 2h2 2h2(1 --E)’ 

Choosing 5 such that 

(A.12) 

(A.13) 
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where c,, is a positive constant, which can be definite in the sequel, we get 

In view of the Theorem 4 and (A.12), it holds 

Combining (A.lO), (A.14), and (A.15), we have 

3c2 max l~J+l(~O+l)l <2 
I<j<J-1 

max Ia;+ 1(so)l, 
Cg l<j<J-1 

c0 can be chosen such that 

3c:<l+ 
co 

(A.15) 

(A.16) 

(A.17) 

Thus, 

max I~$+~(‘~+l)l < (1 -E) max I&~+l(so)I. 
l<j<J-1 l<jCJ-1 

Since this leads to a contradiction, then (A.7) is true. Therefore, the iterative 
algorithm (3.17) is convergent and the solution is unique. 

Combining (A.13) and (A.17), we know that r should satisfy the following 
condition, 

where cg is a constant depending on c5. 
From the Theorem 5, we known that h can be chosen big enough and the 

restriction on r is serious in the iterative algorithm (3.17). 
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